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Peeling of Elastic Tapes: Effects of Large Deformations,
Pre-Straining, and of a Peel-Zone Model

Alain Molinari1 and Guruswami Ravichandran2

1Laboratoire de Physique et Mécanique des Matériaux, Université
Paul Verlaine-Metz, Ile du Saulcy, Metz, France
2Graduate Aeronautical Laboratories, California Institute
of Technology, Pasadena, California, USA

A peel model for non-linear elastic tapes is presented which accounts for large
deformations and for pre-straining. The large deformation setting is a new feature
of modelling, which would be of interest for applications related to soft polymers
and tissues. The conditions for having quasistatic-steady debonding or dynamic
catastrophic debonding are determined in terms of the loading variables (peel angle
and peeling force). The decohesion energy associated with a given process-zone
model is included in the formulation of the peeling model. The predictions of
various decohesion laws are discussed with respect to experimental results in the
literature. Finally, the adhesion of a gecko is analysed and the maximum adhesion
force of a single spatula is evaluated. The result correlates well with the maximum
experimental pulling force reported in the literature for a gecko’s seta.

Keywords: Gecko adhesion; Large deformation; Non-linear elasticity; Peel test;
Peel-zone model; Pre-strain

1. INTRODUCTION

Peeling of adhesive joints is important in many technological applica-
tions. This problem is also of great interest in biological sciences, like
the remarkable ability of some animals to climb walls and walk on ceil-
ings. The modelling of peeling has gained considerable interest in
recent years in relationship to the analysis of biological adhesive sys-
tems. For instance, the adhesive system of the gecko’s toes provide
remarkable climbing abilities [1–3]. The toes contain setal arrays with
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hundreds of spatulae on each seta. The intimate contact between the
toes and surfaces is due to this hierarchical structure and the multi-
plicity of very fine spatulae. This is an example of optimal design of
nature, which has attracted a lot of attention and is an inspiration
for designing new dry adhesives.

Recently, Pesika et al. [4] have considered the peeling of pressure-
sensitive adhesive tapes from a rigid substrate and have pointed to
some analogy with the gecko’s adhesion problem. While Tian et al.
[5] have characterized the pulling force generated by the adhesion
and friction of a single gecko spatula, by considering van der Waals
forces between the adhering surfaces, Pesika et al. [4] have developed
a macroscopic analysis to model the spatula adhesion. This peel-zone
model (henceforth denoted as PPZ model) [4] is based on the micro-
scopic observation of the geometry of the peel zone during the tape
detachment. The model does not account for the tape extensibility
and is not able to correlate with the experimental data at small peel
angles for tapes with low stretch modulus.

The aim of this paper is to propose a general peeling model
accounting for the tape extensibility and to provide a framework
encompassing any peel-zone model. For a rigid substrate, the peel
force is a function of decohesion energy, the mechanical properties
of the tape-backing and the peel angle. For given mechanical proper-
ties of the tape-backing, decohesion energy can be characterized from
measurements of the peel force at various peel angles. Defining the
law governing the decohesion energy is a difficult problem as this
energy may depend on the peel angle, peel rate, temperature, rela-
tive humidity, and dwell time after attachment. In this paper, the
velocity dependence of the debonding energy shall not be considered.
The peeling tests are assumed to be performed under prescribed
peeling rates. Contrary to peel models which assume tape inextensi-
bility, the load-extension response of the tape is an important input
in the present modelling. For the sake of generality, a large defor-
mation framework is adopted here. This new feature of the modelling
together with the ability to account for non-linear elastic response
can be of importance in applications related to soft polymers and
tissues in bioengineering. For tapes with low stretch modulus, the
elongation can be substantial at small peel angles. In this case, large
deformations have to be accounted for in order to predict the peel
force correctly. This point is illustrated by comparing the results
of the present approach with the peeling model of Williams and
Kauzlarich [6], which accurately characterizes the peel force when
the deformation of the tape remains small but becomes less accurate
at large deformations.
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In general, the tape can undergo pre-straining during the bonding
operation with the substrate. The effect of pre-strain on the peeling
force is analysed in detail in this paper. By assuming that the debond-
ing energy is rate independent, the conditions for having quasistatic
and steady, or dynamic (catastrophic) debonding are determined
under force control (given peel angle and peeling force).

The paper is organized as follows. In Section 2, a large deformation
setting is developed to model the peel test of non-linear elastic adhesive
tapes, which accounts for the tape pre-straining. The conditions for (i)
stable adhesion, (ii) quasistatic-steady decohesion, and (iii) dynamic
decohesion are analysed for a prescribed pulling force which is assumed
to be time independent. In Section 3, the model is compared with
experimental results from the literature. A parametric analysis is
then performed to elucidate the effects of large deformations and pre-
straining. In Section 4, the peel-zone model of Pesika et al. [4] is
extended to account for the tape’s elastic response and the results are
then compared with experimental data. Finally, an application of the
model to the gecko’s adhesion system is considered. The maximum
adhesion force exerted on a single spatula is evaluated and is found
to be well correlated with experimental measurements of the maximum
load bearing capacity of the gecko’s seta reported in the literature.

2. PEELING MODEL ACCOUNTING FOR NON-LINEAR
ELASTICITY AND LARGE DEFORMATIONS

A schematic illustration of the steady-state peeling process of a tape is
shown in Fig. 1. The peel angle has a given value h and a constant

FIGURE 1 Schematic of the tape peel test.
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peeling force F is applied. The tape is assumed to be infinitely flexible
(negligible bending [flexion] stiffness). The cross-section of the tape is
rectangular (width, b, and thickness, h). The substrate is considered to
be rigid (no deformation) and the tape is assumed to behave elasti-
cally. The theory is presented in a large deformation setting.

2.1. Calculation of the Peeling Force in Terms
of the Peel Angle

Our aim is to determine the peeling force, F, in terms of the peel angle,
h, and of the mechanical characteristics of the tape and the adhesive
layer. The peeling process is assumed to be stationary; therefore, the
peeling force does not depend on time. Detachment occurs along a pro-
cess zone limited by points, A1 and I, see Fig. 1. For a steady process,
the shape of the process zone remains invariant with time. Debonding
is initiated at I and is completed at the exit of the process zone A1. We
denote by x(t) the position of the tip I of the process zone at time t.

The true strain, e, is uniform along the portion AA1 of the tape which
is completely detached from the substrate. The strain, e, is defined by
e ¼ lnðl=L0Þ, where L0 is the initial length of the tape element (before
bonding to the substrate) and l is the current length. The tape is
assumed to have an elastic response, possibly non-linear. The depen-
dence of the tensile force, FðeÞ, in terms of the strain, e, is identified
from a simple tension test. The strain, e, is assumed to be smaller than
the critical value for which necking occurs. Plastic yielding and strain
rate dependence are disregarded. Peeling tests are assumed to be con-
ducted at constant temperature, relative humidity, and dwell time.

At time t, the tape is bonded to the substrate along IJ, see Fig. 1.
The detachment process is initiated at I and evolves along the process
zone until complete debonding is achieved at A1. We denote by dx the
progress of the process zone from I to I0 realized during the time
increment, dt. The new length of the completely detached tape is
A0A01 ¼ lþ dl.

Denoting by dWext the elementary work of the peel force, F, associa-
ted with the progress of the process zone by a distance dx, the follow-
ing relationship is obtained from energy balance:

dWext ¼ dWel þ dWpeel; ð1Þ

where dWel is the increment of the elastic energy of the tape (the
substrate is assumed to be infinitely rigid). The decohesion energy to
produce complete debonding along the distance dx has the form:

dWpeel ¼ c1b1dx; ð2Þ
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where b1 is the width of attached tape and c1 is the energy per unit
area (of attached tape) required to have complete detachment. The
tape has an initial pre-strain, e1, due to the pre-tensioning during
bonding to the substrate. The tape element with initial length dL0 is
stretched during the bonding process to the length dL. The resulting
pre-strain is e1 ¼ lnðdL=dL0Þ. The initial width, b, of the stress free
tape is changed into b1 after attachment.

The elastic energy stored in the tape element which has the length
dL after bonding is denoted by dWBD

el . This elastic energy, available
before debonding (superscript BD), is evaluated in Appendix A:

dWBD
el ¼ dL

Z e1

0

Fðe0Þ expðe0 � e1Þde0: ð3Þ

When debonding has progressed along the distance dx, the new
state of the system can be described by considering that the element
with length dL ¼ dx and prestrain e1 ¼ lnðdL=dL0Þ before debonding
(i.e., just before entering into the process zone) is transformed into the
tape element just after exiting the process zone with strain
e ¼ lnðdl=dL0Þ. After complete detachment (superscript AD), the tape
element with strain e has the elastic energy, see Appendix A:

dWAD
el ¼ dL

Z e

0

Fðe0Þ expðe0 � e1Þde0: ð4Þ

Thus, for a progress of debonding by the increment dL¼dx, the
variation of the elastic energy of the system is:

dWel ¼ dWBD
el � dWAD

el ¼ dx

Z e

e1

Fðe0Þ expðe0 � e1Þde0: ð5Þ

The peel force F ¼ FðeÞu is collinear with the unit vector,
u ¼ �cos hex � sin hey, where ex and ey are unit vectors defined in
Fig. 1. The incremental work of the peeling force is given by
dWext ¼ F � AA0 with AA0 ¼ dluþ dxex. Thus, considering that
dl ¼ expðeÞdL0 ¼ expðe� e1Þdx, we have:

dWext ¼ �FðeÞ cosðhÞdxþ FðeÞdl ¼ �FðeÞ cosðhÞdxþ FðeÞ expðe� e1Þdx:

By combining this relationship with Eqs. (1), (2), and (5), it follows
that:

FðeÞ expðe� e1Þ � FðeÞ cosðhÞ �
Z e

e1

Fðe0Þ expðe0 � e1Þde0 � c1b1 ¼ 0: ð6Þ
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The bonding energy, c1, per unit area, of the attached tape is in
general a function of the pre-strain, e1, and of the bonding energy, c,
per unit area, of the unstretched tape. Characterizing this functional
dependence is still an open subject; for illustrative purposes, a specific
case is discussed in Appendix B. However, for applications considered
in this paper, the prestrain is in general small. As a first approxi-
mation, the changes in the geometry of the tape can be disregarded.
Thus, one assumes that b ¼ b1 and c ¼ c1. Under this assumption,
Eq. (6) takes on the form:

FðeÞ expðe� e1Þ � FðeÞ cosðhÞ �
Z e

e1

Fðe0Þ expðe0 � e1Þde0 � cb ¼ 0: ð7Þ

For a given peel angle, h, pre-strain, e1, and tape force-deformation
response, FðeÞ, the relationship in Eq. (7) allows one to determine the
strain, e, of the tape after complete detachment and finally to get the
peeling force, F, itself from the constitutive relationship, i.e., FðeÞ in
terms of e.

When c is independent of h, Eq. (7) gives cos h as a function of e.
Thus, the function hðeÞ is known and the graph F � h is easily obtained
by the parametric representation, namely, ðhðeÞ;FðeÞÞ.

For inextensible tapes, Eq. (7) simplifies and the peeling force has
the form

F ¼ cb

1� cos h
: ð8Þ

The above equation due to Rivlin [7] is widely known in modelling
peeling of inextensible tapes.

In the case of relatively small deformations, using Eq. (7), the peel-
ing force can be expressed by a second order expansion in terms of
deformation: FðeÞ ¼ S0ðEeþ E2e2Þ with S0 being the initial cross-sec-
tional area of the stress-free tape. Then, by expanding the relationship
in Eq. (7) to the second order with respect to e and e1, we have:

1

2
S0E ðe� e1Þ2 þ 2e2 E2

E
ð1� cos hÞ

� �
þ S0Eeð1� cos hÞ � cb ¼ 0: ð9Þ

It can be easily checked that, to the order two in e and e1, Eq. (9) is
identical to:

1

2ES0
ðF � F1Þ2 þ Fð1� cos hÞ � cb ¼ 0; ð10Þ

where F1 ¼ Fðe1Þ is the pre-tension force in the tape before debonding.
The expression in Eq. (10) generalizes the well known Kendall’s
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formula [8], by accounting for the pre-straining, e1, of the tape and by
considering a nonlinear dependence of the peeling force with respect
to the deformation e. The influence of the tape pre-strain was
analysed in [9].

The framework adopted here generalizes the approaches of
Williams and Kauzlarich [6,9]. The present formulation accounts for
large deformations by using true strain rather than engineering
strain, which may be important in some applications. Making use of
engineering strain, the result of Williams and Kauzlarich [6].

ð1� e1Þð1þ eÞFðeÞ � FðeÞ cos h�
Z e

e1

Fðe0Þde0 � cb ¼ 0; ð11Þ

agrees with Eq. (7) for relatively small deformations, but differs for
large deformations. This point will be illustrated later.

2.2. Quasistatic and Dynamic Peeling Processes

The peeling force obtained from the energy balance Eq. (1) has been
obtained for a quasistatic stationary process. The state of the system
is defined by the amplitude of the applied force, F, the value of the peel
angle, h, the pre-strain, e1, and the position, x, of the tip of the process
zone. For a given state and given boundary conditions, it is worthwhile
to analyse the conditions under which the debonding process occurs
under quasistatic or under dynamic conditions. As in Section 2.1,
the applied force, F, is constant, or equivalently F and h are constant.

The potential energy of the system is:

Wpot ¼Wel þWF; ð12Þ

where Wel is the total elastic energy and WF ¼ �F �OA is the potential
energy of the applied force F.

For a given displacement, dx, of the process zone tip, the energy,
�dWpot, is extracted from the system. This energy has to be compared
with the debonding energy, dWpeel ¼ cbdx. When �dWpot < cbdx, the
system does not provide enough energy for debonding to occur, thus,
the rate of peeling is _xx ¼ 0. If �dWpot ¼ cbdx, quasistatic debonding
occurs, _xx > 0. The energy balance Eq. (1) is retrieved (with dWext ¼
�dWF) and peeling is governed by Eq. (7). If �dWpot > cbdx, the
energy released from the system is in excess with respect to the energy
consumed by debonding. When rate effects are neglected, the excess of
energy is transformed into kinetic energy and the debonding process is
dynamic and catastrophic for the force controlled conditions and the
constant debonding energy considered here.
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The energy release rate per unit tape-width is defined in the usual
manner:

G ¼ � 1

b

dWpot

dx
: ð13Þ

Using Eq. (12) together with the relationship dWext ¼ �dWF and the
results of Eqs. (5) and (6), we obtain:

Gðe; e1; hÞ ¼
FðeÞ

b
expðe� e1Þ � cos h½ � �

Z e

e1

Fðe0Þ
b

expðe0 � e1Þde0: ð14Þ

With the notation:

Gc ¼ c; ð15Þ

the discussion can be summarized as:

_xx ¼ 0 for G < Gc ðno debondingÞ; ð16aÞ

_xx > 0 for G ¼ Gc ðquasistatic debondingÞ; ð16bÞ

_xx > 0 for G > Gc ðdynamic debondingÞ: ð16cÞ

The condition in Eq. (16b) is precisely the one obtained in Eq. (7).
When this condition is met, it is worth noting that G remains constant.
This is due to Eq. (14) and the time independence of h (loading con-
dition) and of e [consequence of Eq. (7)]. Therefore, the critical con-
dition in Eq. (16b) remains satisfied at all times and the debonding
process is stationary.

3. RESULTS AND DISCUSSION

The effects of the elastic stiffness and of large deformations are first
analysed by considering a 3M-Magic1 tape (3M, St. Paul, MN, USA)
with a cellulose backing and a synthetic acrylic adhesive adherent to
a PTFE substrate as studied in [6]. The tape width and thickness
are b¼ 19 mm and h¼ 0.05 mm, respectively. The mechanical response
of the tape is linearly elastic with Young’s modulus E¼ 1.67 GPa up to
the yield strain of 0.018:

F ¼ ES0e; ð17Þ

where S0 is the initial cross section of the tape in the stress-free state.
The debonding energy per unit surface is c ¼ 10 J=m2 and is shown

in [6] to be independent of the peel angle. Figure 2(a) shows the peeling
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force, F, in terms of the peel angle for 0 � h � 90� in a semi-logarithmic
plot. For reference, we have also plotted in Fig. 2(a) the peeling force for
an inextensible tape given by Eq. (8).

FIGURE 2 (a) Peeling force in terms of the peel angle for a 3M-Magic tape on
a PTFE substrate studied by Williams and Kauzlarich [6]. The response of the
tape is linear elastic with Young’s modulus, E¼ 1.67 GPa. The debonding
energy c¼ 10 J=m2 is assumed to be independent of the peel angle. The pre-
strain is e1 ¼ 0. The models in Eqs. (7), (9), and (11) give the same results.
(b) Deformation in terms of peel angle.
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For this material with relatively high stretching modulus, the
deformation remains small as shown in Fig. 2(b). Therefore, the pre-
dictions of the large deformation theory given by Eq. (7) and of the
small deformation approach given by Eq. (11) are almost identical
(but situations where these models provide different results will be
seen later). These results are in good correlation with the experi-
mental data as shown by Williams and Kauzlarich [6]; see their Fig.
5 where Eq. (11) was used to compare with experiments. Note that
in Fig. 2(b) the deformations predicted by Eq. (7) and (10) are identical
and that the maximum strain obtained for h ¼ 0 is smaller than the
yield strain, 0.018. Thus, the response of the tape remains linearly
elastic. In that case, the Kendall formulation Eq. (9) (with no
pre-straining, i.e., F1¼ 0) also provides correct results.

In Fig. 2, the pre-strain, e1, was assumed to be zero. In the experi-
ments conducted on 3M-Magic tapes and PTFE substrate by Williams
and Kauzlarich [6], the pre-deformation was less than 0.01 according
to these authors. The effect of pre-strain is analysed in Fig. 3 for e1 ¼ 0
(as in Fig. 2), e1 ¼ 0:005, and e1 ¼ 0:01. Here, again, the results pre-
dicted by Eqs. (7), (9), and (11) are in close agreement, the maximum
difference being around 2.5% at h ¼ 0 for e1 ¼ 0:01. Only the results
corresponding to (7) are presented. It is shown in Fig. 3 that at small
values of the peel angle, the peeling force and the strain, e, are increas-
ing with e1.

This feature can be easily demonstrated for h ¼ 0. The strain in the
tape after complete detachment is denoted by êeðe1Þ since it is function
of the pre-strain, e1. Consider two different pre-strains, e1 and e�1; and
denote by F and F� the corresponding peeling forces, by F1 and F�1 the
pretension forces, and by êeðe1Þ and êeðe�1Þ the strains in the detached
tape (also denoted by êe and êe�). Due to the linear elastic response
and small deformations, the generalized Kendall’s formula in Eq. (10)
can be used as it gives the same results as the general approach in
Eq. (7). From Eq. (10), we have at h ¼ 0; F ¼ F1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ES0cb

p
, and

F� ¼ F�1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ES0cb

p
, and by the difference:

F � F� ¼ F1 � F�1: ð18Þ

The forces are related to strains by linear elasticity, thus, from
Eq. (12) one has:

êeðe1Þ � êeðe�1Þ ¼ e1 � e�1: ð19Þ

For e�1 ¼ 0, it follows that êeðe1Þ ¼ êeð0Þ þ e1. Thus, it has been shown
that, for h ¼ 0, the deformation, êeðe1Þ, in the tape after detachment
is the superposition of the pre-strain, e1, and the deformation without
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pre-strain, êeð0Þ. The results shown in Fig. 3(b) are clearly in agree-
ment with this relationship.

When the pre-strain is increased (e1 > e�1), it can be deduced from
Eq. (18) and the linear force-deformation relationship that the peeling

FIGURE 3 Effect of the pre-strain e1 on (a) the peeling force, (b) the strain
after complete detachment. The results of the large deformation model
Eq. (7) are almost identical with the small deformation model Eq. (11) and
the modified Kendall model Eq. (9). The maximum difference between these
models is 2.5% at h ¼ 0 for e1 ¼ 0:01. For clarity, only the results of the model
Eq. (7) are shown.

Peeling of Elastic Tapes 971

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



force is also increased (F > F�). This result obtained for h ¼ 0 is also
valid for small values of the peel angle as shown in Fig. 3(a).

For larger values of h, it appears in Fig. 3(a) that the peeling force is
a decreasing function of the pre-strain, contrary to the situation found
for small values of h. This is related to the release of the elastic energy
stored during the bonding process. During debonding, the deformation
in the tape decreases and part of the stored energy is released and
contributes to the detachment process, thereby reducing the level of
the external work and of the peeling force necessary for debonding.

We consider now a tape whose force-extension relationship is
described by a power-law:

F ¼ Ben: ð20Þ

In Fig. 4(a) the corresponding dependence of the peeling force is
shown in terms of the peel angle for the decohesion energy
c ¼ 20 J=m2. The parameters in Eq. (20) are those for the 3M 33PVC
electrical tape considered in [6]: n¼ 0.51; B¼ 23.6 N. The force exten-
sion diagram is represented in Fig. 4(c). Necking does not occur since
according to Eq. (20) the force is increasing with deformation. In
Fig. 4(a), the whole range of peel angle 0 � h � 180� is considered to
illustrate the perfect match of Eq. (7), for large enough h, with the
result Eq. (8) for inextensible tape. Note, however, that for this highly
extensible tape it is shown in [6] that the peel force at h ¼ 180� for no
prestrain is near that which is measured at 90�, whereas the theory
for inextensible tapes shows that peel force at 180� is equal to half
that at 90�.

The information given in [6] by Williams and Kauzlarich on the
adhesion energy was not sufficient to make a direct comparison with
their experimental data. However, a parametric analysis can be car-
ried out to evaluate the effect of the large deformation theory. For
small peel angles, Figs. 4(a) and 4(b) indicate only a small deviation
between the results given by the large deformation approach in Eq.
(7) and those of the small deformation approach in Eq. (11). The
results shown in Fig. 5 are obtained for a softer tape response with
B¼ 1.18 N. The difference between the results of Eq. (7) and (11) is
about 10% at small peel angles.

The effect of the pre-strain is analysed in Fig. 6. The conditions are
the same as in Fig. 4 except for the value of pre-strain which was zero
in Fig. 4 and is assumed here to be e1 ¼ 0:05: A significant divergence
between the predictions of Eqs. (7) (bold line) and (11) (line with
markers) can be observed at small peel angles. As observed and com-
mented on earlier in discussing Fig. 3, the comparison of Fig. 4(a) and

972 A. Molinari and G. Ravichandran

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



FIGURE 4 The peeling force and the tape deformation shown in (a) and (b)
in terms of the peel angle h are obtained for the force-extension power-law
Eq. (15) represented in (c). The coefficients of the power-law (n¼ 0.51;
B¼ 23.6 N) have been calibrated by Williams and Kauzlarich [6] so as to be
representative of the response of the 3M 33 PVC electrical tape. The decohe-
sion energy is c¼ 20 J=m2 and the pre-strain is zero. Note that the results in
(a) and (b) given by Eq. (7) (bold solid line) are close to those of Eq. (11) (thin
solid line with markers). In (a), the whole range of peel angle 0 � h � 180� is
considered to illustrate the perfect match, for large enough h, with the result
Eq. (8) for inextensible tape.
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FIGURE 5 The conditions are the same as in Fig. 4 except for B¼ 1.18 N
which is smaller here (softer material). Note the difference between the results
of the large deformation model Eq. (7), bold solid line, and those of Eq. (11)
(model of Williams and Kauzlarich [6]), thin solid line with markers.

974 A. Molinari and G. Ravichandran

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
2
0
:
0
2
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



FIGURE 6 Effect of the pre-strain (e1 ¼ 0:05) on (a) the peel force, (b) the tape
deformation. The conditions are the same as those of Fig. 4 except for the
pre-strain which was e1 ¼ 0 in Fig. 4. To quantify the effect of pre-straining
the results can be compared with those of Fig. 4. The predictions of Eq. (7)
are the bold lines; those of Eq. (11) are the lines with markers. Note that
the model accounting for tape extensibility merges with the inextensible
solution at h ¼ 22�. Above this value the stored elastic energy helps the
debonding and consequently the peeling force is smaller than for e1 ¼ 0.
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Fig. 6(a) shows that the peel force increases with e1 at small peel
angles while it decreases at larger peel angles.

A critical value, ec
1, of the pre-strain can be defined, above which the

stored elastic energy is large enough to produce a spontaneous debond-
ing of the tape when no force is applied. This critical value is obtained
by setting F¼ 0 and e ¼ 0 in Eq. (7). Thus, ec

1 is the unique solution of
the equation:

cðec
1Þ ¼ 0; ð21Þ

where the function c(.) is defined by:

cðe1Þ ¼
Z e1

0

Fðe0Þ expðe0Þde0 � cb expðe1Þ: ð22Þ

The uniqueness of the solution of Eq. (21) is demonstrated in
Appendix C.

Note that the stored energy per unit length of the bonded tape is
given by Eq. (3):

WBD
el ¼

Z e1

0

Fðe0Þ expðe0 � e1Þde0: ð23Þ

The condition in Eq. (21), defining the critical pre-strain for which
spontaneous debonding occurs, is realized when the stored elastic
energy becomes equal to the debonding energy per unit length, cb.

For the same conditions as those considered in Fig. 4 (tape charac-
teristics given by a power law with n¼ 0.51, B ¼ 23:6 N, decohesion
energy c ¼ 20 J=m2), the critical pre-strain has the value
ec
1 ¼ 0:08729: Note that the assumption of small pre-strain is at its

limit here. However, Eq. (7) is still used as a first approximation.
The peeling force and the deformation in the detached tape are shown
in Fig. 7 in terms of the peel angle in the case where the pre-strain is
ec
1. Clearly, e ¼ 0 is a solution of Eq. (7) due to Eq. (21) and the fact that

F¼ 0 for e ¼ 0. Thus, at any peel angle, spontaneous debonding occurs
for e ¼ 0, i.e., at a zero peel force. However, Fig. 7(b) shows also the
existence of another root of Eq. (7) for h < 23:6�: In Appendix D, it is
proved that for e1 < ec

1 there is a unique solution of Eq. (7) for any
value of the peel angle, h, while for e1 � ec

1 depending on the value of
h, there exists zero, one, or two solutions.

The solutions for deformations (e) of Eq. (7) are shown in Fig. 7(b) by
the bold solid lines. These lines define the limit between the domain
where debonding is not feasible and the domain of dynamic debonding.
At the limit between these domains a quasistatic and steady debond-
ing is activated.
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FIGURE 7 The tape has the same properties as in Figs. 4 and 6 but the pre-
strain is increased to the critical value ec

1 ¼ 0:08729 for which spontaneous
debonding occurs for F¼ 0 at any peel angle h. The bold solid lines in (a) and
(b) correspond, respectively, to the values of the peeling force, F, and of the
strain, e, for which a steady quasistatic debonding is activated. These lines
are the boundaries between domains where debonding is not possible and
where dynamic debonding occurs. In (b), the bold solid lines represent the roots
of Eq. (7). In addition to the root e ¼ 0, a second root exists for values of the peel
angle smaller than h1 ¼ arccosðexpð�ec

1ÞÞ, see Appendix D. Here, h1 ¼ 23:6�.
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In Fig. 8, the tape has same properties as in Figs. 4, 6, and 7 except
for the pre-strain e1 ¼ 0:1, which is larger than the critical value
ec
1 ¼ 0:08729: The bold solid line in Figs. 8(a) and (b) correspond to

states for which steady quasistatic debonding is activated. Note that

FIGURE 8 The tape has the same properties as in Figs. 4, 6, and 7 except for
the pre-strain e1 ¼ 0:1 which is larger than the critical value ec

1 ¼ 0:08729. The
solid lines in (a) and (b) correspond to states for which steady quasistatic
debonding is activated.
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the solid line in (b) is easily obtained by observing that cos h is directly
obtained in terms of e from the relationship in Eq. (7). Then, the solid
line in (a) is readily obtained in the parametric form ðhðeÞ;FðeÞÞ: For
h > 20:71�, Eq. (7) has no root for e, while for h < 20:71�, there are
two positive roots; see the discussion in Appendix D.

It is worth discussing the results of Fig. 8 for the case h ¼ 0. Figure
8(a) shows the existence of a segment [0.7 N, 12 N] of the peel force
where no peeling occurs for any value of the force taken within this
segment. Indeed, considering the case F¼ 0 for reference, the rate of
external work is increased for any F taken inside the range [0.7 N,
12 N], but the increase is insufficient to compensate for the decrease
of the elastic energy release rate. Indeed, the elastic energy remaining
within the detached tape is increased for higher values of F; this is
why the elastic energy release rate is reduced when F is increased.

Figure 9 shows, for different values of the pre-strain, the contour
lines for which a steady quasistatic debonding does occur. This is an
illustration of the results demonstrated in Appendix D concerning
the uniqueness or the multiplicity of the roots of Eq. (7).

The results shown in Figs. 7–9 can be considered as ‘‘stability
maps.’’ These maps define the various domains in the peel-
angle=peel-force plane. The first one is a domain of stable adhesion
(no debonding is activated) and the second domain corresponds to
dynamic debonding (catastrophic and uncontrolled process). The
two domains are separated by a line where conditions of stable steady
debonding are met. Figures 7–9 give a clear illustration of how
the debonding process can be affected by the level of prestraining.

4. PROCESS ZONE MODEL

In general, the decohesion process takes place along a certain distance
defining a process zone (or cohesive zone). Several process zone models
have been developed in the literature for various tape responses; see,
for example [4] and [10–15]. These models are aimed at defining the
shape of the process zone and the energy dissipated during decohesion.

In this section, we consider the process zone model of Pesika et al.
[4] accounting for the progressive decohesion of elastic tapes. The tape
is still infinitely flexible [bending (flexion) work is neglected].
However, the tape has a finite curvature within the process zone. This
curvature is related to the particular physics of the decohesion pro-
cess, the flexible adhesive being drawn out into a series of fibrils.
Pesika et al. [4] have considered the case of an inextensible tape. Here,
the elastic deformation of the tape is included in the modelling and the
effect of the pre-strain is also analysed.
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4.1. The Peel-Zone Model of Pesika et al. [4] (PPZ Model) for
Inextensible Tapes

The tape is first assumed to be inextensible. According to Pesika et al.
[4], the decohesion process has two different regimes which are
defined by the value of the peel angle, h, with respect to a critical
angle, /0 (0 � /0 � p=2). Note that the tests conducted by these
authors were limited to peel angles 0 � h � p=2.

Regime I (/0 � h � p=2)
The component F? of the peeling force orthogonal (perpendicular)

to the substrate surface is independent of the peeling angle, h. Thus,
we have:

F ¼ F?= sin h: ð24Þ

FIGURE 9 The tape has the same force-extension law (power-law with coeffi-
cients n¼ 0.51; B¼ 23.6 N) and same decohesion energy (c¼ 20 J=m2) as in
Figs. 4, 6, 7, and 8. The roots of Eq. (7) are represented by different lines cor-
responding to the following values of the pre-strain e1 ¼ 0:05 (subcritical),
ec
1 ¼ 0:08729 (critical), and e1 ¼ 0:1 (supercritical). For a given value of e1,

the corresponding line represents the conditions for having a steady quasi-
static decohesion process and is the limit between the domains of stable
adhesion and dynamic debonding, see Figs. 7 and 8. As demonstrated in
Appendix D, the Eq. (7) has a single root (thin solid line) in the subcritical case
(e1 < ec

1), one or two roots (bold solid line) in the critical case (e1 ¼ ec
1), and zero,

one, or two roots (dashed line) in the supercritical case (e1 > ec
1).
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The incremental external work is still given by Eq. (6) where
deformations are taken equal to zero (inextensible tape) and F is
independent of deformation. Thus,

dWext ¼ FðhÞð1� cos hÞdx: ð25Þ

The following material constant is introduced:

c� ¼ F?=b: ð26Þ

The incremental decohesion energy can be written as:

dWpeel ¼ bcdx: ð27Þ

The decohesion energy per unit surface, c, is decomposed into
reversible surface energy, cS (which is the sum of the contribution of
the two surfaces created by debonding), and dissipated energy, DðhÞ:

c ¼ DðhÞ þ cS: ð28Þ

In general, the dissipated energy depends upon the peel angle.
The energy balance for inextensible tapes has the form,

dWext ¼ dWpeel. By using Eqs. (24)–(28), we have:

DðhÞ þ cS ¼
c�ð1� cos hÞ

sin h
: ð29Þ

Note that DðhÞ is increasing with h. Note also that the material con-
stant c� is related to the energy dissipation at h ¼ p=2 by
c� ¼ Dðp=2Þ þ cS.

Regime II (0 � h � /0)
In the Regime II, the peel force depends on the peel angle as:

FðhÞ ¼ bc�
h
/0

� �
1� cos /0

1� cos h

� �
1

sin h
: ð30Þ

For h ¼ /0, the peeling force is Fð/0Þ ¼ bc� 1
sin /0

, which matches with
the value corresponding to Regime I given by (24) and (26). As for
Regime I, considering that the tape is inextensible, the peeling energy
per unit surface can be obtained from Eqs. (24)–(28):

DðhÞ þ cS ¼ c�
1� cos /0

/0

h
sin h

: ð31Þ

This expression matches with Eq. (29) for h ¼ /0.
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4.2. Case of an Extensible Tape

Assume now that the tape can be elastically extended. It is assumed
that peeling can be described by the process zone model [4]. The result
in Eq. (7) can be used by replacing c by

c�ð1� cosðhÞÞ
sinðhÞ for /0 � h � p=2 :

FðeÞ expðe� e1Þ � FðeÞ cosðhÞ �
Z e

e1

Fðe0Þ expðe0 � e1Þde0

� bc�
1� cos h

sin h
¼ 0; ð32Þ

and by replacing c by c� 1�cos /0

/0

h
sin h for 0 � h � /0:

FðeÞ expðe� e1Þ � FðeÞ cosðhÞ

�
Z e

e1

Fðe0Þ expðe0 � e1Þde0 � bc�
1� cos /0

/0

h
sin h

¼ 0: ð33Þ

The model depends upon two parameters, c� and /0. The angle, /0,
can be obtained from the measurement of the curvature of the backing
and the length of the peel zone, see Pesika et al. [4]. The parameter c�

is the adhesion energy at h ¼ 90� and can be determined by a single
test at h ¼ 90� by assuming that the tape sustains negligible exten-
sion. The peeling force is then given by F ¼ bc�. However, c� is fre-
quently characterized by measurements at h ¼ /0. Note that c� is, in
general, a function of the properties of the tape backing, of the
adhesive, of the substrate, and of the detachment velocity. Note also
that the peel-zone model of Pesika et al. [4] is retrieved when the tape
extensibility is neglected (e ¼ e1 ¼ 0).

4.3. Comparison of the Pesika et al.’s Peel-Zone Model [4]
with Experimental Data

Pesika et al. [4] have used their model to characterize the peel test of
adhesive tapes. Their experimental data are shown in Fig. 10 where
the peel force per unit width (F=b) is represented in terms of the peel
angle for a 3M 33 PVC electrical tape (squares) and for a composite
tape (circles) made up of two layers, one of 3M 33 PVC electrical
tape and one of 3M multitask ScotchTM tape. The peel force is
obtained by multiplying the results of Fig. 10 by the tape width,
b¼ 19 mm.
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The dashed line represents the PPZ model. In this model, the tape is
considered to be inextensible and the peel force, F=b, is given by Eq. (24)
and (26) for /0 � h � p=2 and by Eq. (30) for 0 � h � /0. For the electri-
cal tape, the material parameters are /0 ¼ 65� and c� ¼ 270 N=m.

A single layer of electrical tape has a relatively low stretching
modulus which allows the tape to be significantly elongated during
the peeling process. Therefore, the PPZ model which neglects the tape
stretching cannot predict the peeling force for peel angles smaller than
50� (see Fig. 10a). By adding to the electrical tape a layer of 3M multi-
task Scotch tape, the composite tape so obtained has a higher stretch-
ing modulus while the adhesive properties remain identical to those of
the electrical tape. The slight increase of the bending modulus of the
composite tape is believed to have a negligible effect on the tape cur-
vature which is assumed to be fully controlled by the adhesive
strength. The peel-zone model is, therefore, the same for the composite
tape and for the electrical tape. Since the stretching modulus of the
composite tape is higher, the PPZ model is now able to predict cor-
rectly the experimental results for peel angles larger than 30� [dashed
curve compared with circles in Fig. 10(a)]. However, for peel angles
smaller than 30�, a divergence is still found between the peel-zone
model and the experimental data.

The solid lines in Fig. 10(a) show the results of the peel-zone model
accounting for the tape extensibility (elastic deformation). The model
predictions are given by Eq. (32) for /0 � h � p=2 and by Eq. (33) for
0 � h � /0. The values of /0 and of c� are the same as for the inexten-
sible peel-zone model.

It is assumed that the pre-straining is equal to zero. For the 3M 33
PVC electrical tape (Layer #1) the force per unit width can be
described, according to [6], by:

F1 ¼ a
e

1þ e
; ð34Þ

with a¼ 2,332 N=m. The same tape was considered in Fig. 4. It can be
noted that the power law used in Fig. 4, given also in [6], provides
slightly different results at true strains smaller than 1 (no strains lar-
ger than 1 are reached in the cases studied here). Note also that the
level of adhesion energy considered in Fig. 4 was much smaller than
that of Fig. 10. For the second layer (3M multitask Scotch tape), the
response is linear elastic:

F2 ¼ ce; ð35Þ

with stiffness c¼ 46,000 Nm�1 (tape thickness 40 mm, the Young’s
modulus, E was measured as 1.15 GPa from tensile testing).
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FIGURE 10 (a) Peel force per unit width (F=b) in terms of the peel angle h.
The experimental results of Pesika et al. [4] are represented by squares for
the 3M 33 PVC electrical tape and by circles for the composite tape made up
of two layers (Layer #1 is a 3M 33 PVC electrical tape, Layer #2 is a 3M multi-
task Scotch tape). The dashed curve is the peel-zone model of Pesika et al. [4]
(PPZ model) for inextensible tape with parameters /0 ¼ 65� and c� ¼ 270 N=m.
The solid lines represent the results of the peel-zone model extended to
account for the tape elastic deformation and for the constitutive models shown
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Figure 10(b) shows the tensile response (force per unit tape-width in
terms of deformation) for Layer #1 (dashed line) and Layer #2 (solid
line). The response of the composite tape, obtained by addition of the
tensile force of each individual layer, is close to those of Layer #2
and cannot be distinguished from the solid line in Fig. 10(b). This
is due to the high stiffness of the 3M multitask Scotch tape which
dominates the global response of the composite layer.

The solid lines in Fig. 10(a) represent the peel force per unit tape
width for the Layer #1 (lower curve) and for the composite tape (upper
curve). These results are obtained with the augmented peel-zone
model (32), (33). The theoretical results for the 3M electrical tape show
good agreement with the experiments of Pesika et al. [4] (square sym-
bols) for peel angles larger than 60�. For lower values of the peel angle
h, a qualitative agreement is still found, but predictions of the model
are stiffer than those of the experiments. For the composite tape,
the agreement between the model, (32) and (33), and the experimental
data is good for h larger than 30� but is poor for small values of h.
Indeed, due to the high stiffness of the composite layer the predictions
of the model, (32) and (33), are close to those of the inextensible model
of Pesika et al. [4] [dashed line in Fig. 10(a)]. This raises the question
about the factors contributing to the discrepancy between experi-
mental data and model predictions at low peel angles.

The PPZ model [4] predicts that the decohesion energy is an
increasing function of h. The model assumes the existence of a station-
ary point at the exit of the peel zone. In this model, this point remains
at the same distance from the substrate surface for all peel angles.
This distance is determined by the value (assumed constant) of the
tensile force of the last active filament. However, this hypothesis
may not be valid when small peel angles are considered. In such cases,
the adhesive layer sustains a shear dominant mode of deformation and
the decohesion mechanism is likely to be different from the tensile
mode of fibril elongation observed at large values of h. It is expected

in Fig. 10(b) and described by Eq. (34) for Layer #1 and by Eq. (35) for Layer
#2. The prestrain is e1 ¼ 0. (b) Force per unit width as a function of the defor-
mation e for the Layer #1, 3M 33 PVC electrical tape (dashed curve) and the
Layer #2, 3M multitask Scotch tape (solid line). The mechanical response of
the composite layer (Layer #1þLayer #2) is close to those of Layer #2
and cannot be distinguished on the graph. This is due to the high stiffness
of the 3M multitask Scotch tape which dominates the response of the
composite layer.

3
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FIGURE 11 (a) Same configuration as in Fig. 10(a), except that the decohe-
sion energy is assumed to be constant (independent of the peel angle). For
the value c ¼ 162 N=m, the results shown by the solid curves (upper curve is
for the composite tape, lower curve is for the electrical tape) are of the same
quality as compared with those shown in Fig. 10(a) with the h-dependent deco-
hesion energy given by the PPZ model [4]. (b) The decohesion energy here has
a maximum value of c1 ¼ 162 N=m at h¼ 90� and a minimum c2 ¼ 67:5 N=m at
h¼ 0�. The variation of the debonding energy with h is given in the text. A
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that, at small values of h, the decohesion energy resulting from the
shear mode of deformation will be smaller than those predicted by
the PPZ model based on a fibril mode of decohesion. The decrease of
the debonding energy associated with the shear mode should provide
a better agreement with experimental data for small peel angles.

To evaluate the effect of the dependence of the decohesion energy upon
h, different decohesion models are compared in Fig. 11. In Fig. 11(a), we
consider the most simple case where the decohesion energy c is constant.
Taking c ¼ 162 N=m provides results of about the same quality, com-
pared with the experimental data, than those in Fig. 10(a) where the
debonding energy was given by the PPZ model [4]. For h ¼ 90�, the
measured peel force is underestimated by the model with
c ¼ 162 Nm�1 and overestimated by the PPZ model (dashed line).

The decohesion model considered in Fig. 11(b) is defined by a
maximum value of the decohesion energy c1 and a minimum value
c2. It is assumed that the decohesion energy is constant for
h1 � h � p

2, where h1 is a given angle. The minimum value, c2, is
assumed to be reached at h ¼ 0. For 0 � h � h1, the variation of the
decohesion energy in terms of h is given by the polynomial expression
cðhÞ ¼ a0 þ a1hþ a2h

2 þ a3h
3, where the coefficients ai are determined

so as to satisfy the conditions cðh1Þ ¼ c1; cð0Þ ¼ c2;
dc
dh ðh1Þ ¼ 0, and

dc
dh ð0Þ ¼ 0. The results shown in Fig. 11(b) correspond to the following
values of the model parameters: c1 ¼ 162 N=m, c2 ¼ 67:5 N=m, and
h1 ¼ 60�. These results provide a better agreement with the experi-
mental data when compared with those using the PPZ model [4]
[see Figs. 11(b) and 10(b)]. It seems difficult to have, with the same
decohesion law, a good match of the experimental data for the electri-
cal tape and the composite layer. This suggests that the decohesion
energy might be affected by the addition of the 3M multitask Scotch
tape to the electrical tape.

5. ADHESION OF A GECKO’S SPATULA

Pesika et al. [4] applied their peel zone model to analyse the adhesion
of a gecko’s spatula on a glass substrate. In this case, adhesion is due

better correlation is obtained with experimental results as compared with the
models used in Figs. 10(a) and 11(a). However, it seems hard to have a good
representation of the results for the electrical tape together with the composite
layer. This suggests that the debonding energy may be affected by the addition
of the multitask Scotch tape to the electrical tape.

3
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FIGURE 12 (a) Peel force per unit width in terms of the peel angle for a
gecko’s single spatula. The PPZ model (neglecting elastic effects) is repre-
sented by the dashed line. The model parameters are /0 ¼ 90� and
c� ¼ 0:05 N=m for a glass substrate. The solid line shows the effects of elastic
deformations of the gecko’s spatula. (b) Adhesion force per unit width (F?=b)
of a spatula, for the PPZ model [4] (dashed line). Other curves show the effects
of elastic deformations for a spatula with thickness h¼ 10 nm (dotted curve),
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to van der Waals forces. Thus, the concept of a cut-off distance to the
substrate beyond which adhesive forces do not operate can be intro-
duced. Due to the nature of van der Waals forces, this cut-off distance
does not depend on the peel angle. Therefore, the PPZ model should
work for the whole range of peel angles, while for adhesive tapes
one observes limitations at small peel angles [see Fig. 10(a)].

The spatula pads are made up of b-keratin with Young’s modulus of
approximately 1.5 GPa [16]. In [4] the spatulae are considered to be
sufficiently stiff to neglect extensibility. In Fig. 12(a) the peel force
per unit width exerted on a single spatula is given in terms of the peel
angle. The dashed line represents the PPZ model [4] with /0 ¼ 90� and
c� ¼ 0:05 N=m for a glass substrate. Note that c�, the decohesion
energy per unit surface for a peel angle of h ¼ 90�, was calibrated in
[4] to be compatible with the measurement of the peel force by Huber
et al. [17] for a single spatula. These authors measured the maximum
pull force to be 10 nN for the peel angle h ¼ 90�. Indeed, as the width of
the spatula is b¼ 200 nm, the maximum pulling force at h ¼ 90� is
bc� ¼ 10 nN (assuming negligible elastic deformation). The effect of
the spatula’s elastic extensibility is illustrated in Fig. 12(a) (bold solid
line). The thickness of the spatula is taken as h¼ 30 nm. Results are
obtained using Eq. (33) and are similar to those of Kendall’s model.
It is observed that elastic effects become substantial for a peel angle
lower than 20�.

In Fig. 12(b), we report the adhesion force per unit width,
F?=b ¼ F=b sinðhÞ, in terms of the peel angle. The same data and equa-
tions are used as for Fig. 12(a). The dashed line refers again to the PPZ
model [4] for inextensible spatula. When elastic effects are accounted
for, the adhesion force shows a maximum load bearing capacity which
depends on the spatula’s stiffness. For h¼ 30 nm, the maximum of the
adhesion force is given in Fig. 12(b) by Fspatula

? =b ¼ 0:203 N=m for the
value of the peel angle h ¼ 11:8�. Thus, for a single spatula with width
b¼ 200 nm, the maximum of the adhesion force is Fspatula

? ¼ 40:6 nN.
Considering that a seta contains about 1000 spatulae, it is worth not-
ing that for a single seta the maximum of the predicted adhesion force
by the present model is Fseta

? ¼ 40:6 mN. This value is very close to the

30 nm (bold solid line), and 100 nm (thin solid line). The adhesion force has a
maximum load bearing capacity when elastic effects are taken into account.
Note that for h¼ 30 nm, the maximum of the adhesion force is 0:203 N=m. This
value provides a maximum adhesion force for a single seta in agreement with
experimental measurements.

3
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measured adhesion force reported in the literature, [2] and [4]. These
results depend on the tensile stiffness of the spatula which, for a given
width b, is proportional to the thickness h. In the literature, h is
reported to decrease along the spatula length with a minimum value
of 10 nm at the tip of the spatula. However, there is a certain scatter
in the evaluation of the maximum value of h (at the base of the spat-
ula) between 30 and 100 nm. For comparison, we have reported in
Fig. 12(b) the effects of the spatula’s thickness on the adhesion force
for h¼ 10, 30 and 100 nm.

6. CONCLUSIONS

The peeling test of non-linear elastic tapes has been described by
developing a general framework accounting for large deformations,
tape pre-straining, and the gradual debonding of the tape along a pro-
cess zone. The introduction of a large deformation setting is a new
aspect of the modelling, which is motivated by potential applications
to soft polymers and tissues, especially in bioengineering. Non-linear
material response and large extensibility are important features
which are fully accounted for by the present model.

A parametric analysis has been developed to show how large defor-
mations of the tape could affect the peeling force. The pre-strain intro-
duced into the tape during the bonding operation can also have
important implications on the debonding process. ‘‘Stability maps’’
have been obtained in the peel-angle=peel-force plane for the case of

FIGURE 13 Schematic representation of the function cðe1Þ defined by the Eq.
(22).
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force control. In the stability map two domains can be distinguished,
the first being a domain of stable adhesion (where no debonding is acti-
vated) and the second being a domain of dynamic debonding (cata-
strophic and uncontrolled process). The two domains are separated
by a line where conditions of steady debonding are met.

The decohesion energy associated with a given process-zone model can
be easily included in the formulation of the peeling model. The process-
zone is the region where the tape is progressively detached from the sub-
strate. As an example, the process-zone model of Pesika et al. [4] (PPZ)
initially developed for inextensible adhesive tapes has been extended
here by accounting for elastic deformations. The results of the model
have been compared with the experimental data of Pesika et al. [4] for
adhesive tapes. They are found to be in good quantitative agreement
with experimental data for large values of the peel angle and in qualitat-
ive agreement for small peel angles. It is noted that, for adhesive tapes,
the value of the decohesion energy predicted by the PPZ model [4] might
be too large at small peel angles. However, when the gecko’s adhesion is
considered, adhesion is due to Van der Waals forces and the PPZ model
can be viewed as valid in the whole range of peel angles.

We have evaluated the maximum adhesion force of a single gecko’s
spatula by combining the PPZ model and elastic effects. The theoreti-
cal prediction was found to be well correlated to the measurement of
the maximum load bearing capacity of a gecko’s seta reported in the
literature.
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APPENDIX A: ELASTIC ENERGY

Consider a tape element with length L0 in the stretch free state (no
deformation). During the bonding process with the substrate, this
element is stretched to a length L and the strain after bonding is
e1 ¼ lnðL=L0Þ, which is the pre-strain. When the element is completely
detached from the substrate the length has the value l and the strain
is e ¼ lnðl=L0Þ. During stretching from L0 to L the elastic energy is
identical to the work of the tensile force F. Thus, the elastic energy
stored in the tape element before debonding (BD) is:

WBD
el ¼

Z L

L0

FðL0ÞdL0 ¼ L0

Z e1

0

Fðe0Þ expðe0Þde0

¼ L

Z e1

0

Fðe0Þ expðe0 � e1Þde0:

ðA1Þ

Similarly, after complete detachment (AD) the elastic energy has the
form:

WAD
el ¼ L0

Z e

0

Fðe0Þ expðe0Þde0 ¼ L

Z e

0

Fðe0Þ expðe0 � e1Þde0: ðA2Þ

APPENDIX B: DEPENDENCE OF THE BONDING ENERGY
(PER UNIT AREA), c1, OF ATTACHED TAPE UPON THE
BONDING ENERGY (PER UNIT AREA), c, OF THE
UNSTRETCHED TAPE

The bonding energy (per unit area), c1, of attached tape should at least
depend upon the pre-strain, e1, and the bonding energy (per unit area),
c, of the unstretched tape. The general formulation of this functional
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dependence is hardly accessible, and should be a function of the
physical and chemical properties of the surfaces considered. We
develop here the analysis under the simple assumption that the bond-
ing energy of the stretched element, c1b1dx, is identical to the bonding
energy of the unstretched element with area, b dL0:

c1b1dx ¼ cb dL0: ðB1Þ

Considering that dL0 ¼ expð�e1Þdx, it follows that:

c1b1 ¼ cb expð�e1Þ: ðB2Þ

Thus, Eq. (6) can be written as:

FðeÞ expðe� e1Þ � FðeÞ cosðhÞ �
Z e

e1

Fðe0Þ expðe0 � e1Þde0 � cb expð�e1Þ ¼ 0:

ðB3Þ

It is worth noting that, for a small pre-strain, e1, the relationship
Eq. (7) is retrieved.

It is also interesting to mention that (B1) can be elegantly expressed,
in terms of the stretches k ¼ dl

dL0
¼ expðeÞ and k1 ¼ dx

dL0
¼ dL

dL0
, as:

ðk� k1 cos hÞFðkÞ �
Z k

k1

Fðk0Þdk0 � cb ¼ 0: ðB4Þ

APPENDIX C: UNIQUENESS OF THE ROOT, ec
1, OF THE

EQUATION cðec
1Þ ¼ 0

From the definition Eq. (22) of the function cðe1Þ we have:

dc

de1
¼ ðFðe1Þ � cbÞ expðe1Þ: ðC1Þ

Since Fðe1Þ ¼ Ben
1 is strictly increasing, and since Fð0Þ ¼ 0, there exists

a number e� > 0 such that,

dc

de1
< 0 for 0 � e1 < e�;

dc

de1
¼ 0 for e1 ¼ e�;

dc

de1
> 0 for e� < e1:
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Since cð0Þ ¼ �cb < 0 and lim
e1!1

dc
de1
¼ 1, there is a single root, ec

1, of the

equation cðec
1Þ ¼ 0, as illustrated in Fig. 13.

The following results are also used in the paper:

cðe1Þ < 0 for e1 < ec
1;

cðe1Þ ¼ 0 for e1 ¼ ec
1;

cðe1Þ > 0 for e1 > ec
1:

ðC2Þ

APPENDIX D: ROOTS OF EQUATION (7)

For given values of the pre-strain, e1, and of the peel angles, h, let us
define the function HðeÞ as:

HðeÞ ¼ Gðe; e1; hÞ �Gc; ðD1Þ

where G is the energy release rate defined by Eq. (14) and Gc ¼ c is the
decohesion energy per unit area.

Note that the roots, e, of the equation

HðeÞ ¼ 0; ðD2Þ

are identical to those of Eq. (7). From the definition Eq. (22) of c(.) and
considering that F(0)¼ 0, we have:

Hð0Þ ¼ 1

b
expð�e1Þcðe1Þ:

It follows from (C2) that:

Hð0Þ < 0 for e1 < ec
1;

Hð0Þ ¼ 0 for e1 ¼ ec
1;

Hð0Þ > 0 for e1 > ec
1:

ðD3Þ

Considering the derivative of (D1) with respect to e, it follows that:

dH

de
¼ 1

b

dF

de
ðexpðe� e1Þ � cos hÞ: ðD4Þ

It is assumed that dF
de > 0 for e � 0 and that lim

e!1
expðeÞ dF

de ¼ þ1. Note

that these conditions are in particular fulfilled for the power law
Eq. (20). Note also that, from (D4), we have:

lim
e!1

dH

de
¼ þ1: ðD5Þ
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Clearly, there exists a unique e� (possibly negative) such that the
quantity ðexpðe� e1Þ � cos hÞ is strictly negative for e < e�, zero for
e ¼ e�, and strictly positive for e� < e. Thus, from (D4) the function

e!HðeÞ is strictly decreasing for e< e� and strictly increasing for e� < e:

ðD6Þ

The discussion of the roots of Eq. (7) depends on the value of the pre-
strain e1.

Case, e1 < ec
1

According to (D3) we have Hð0Þ < 0. Considering, in addition, the
results (D5) and (D6) it appears that there exists a unique root e > 0
of (D2).

Case, e1 ¼ ec
1

From (D3), we have Hð0Þ ¼ 0. Thus, e ¼ 0 is a root of Eq. (D2) and
(7). However, depending on the value of the peel angle another root
may exist. Let us define h1 by h1 ¼ arccosðexpð�ec

1ÞÞ. Note that
0 � h1 � p=2. From (D4), we have

dH

de
ð0Þ ¼ 1

b

dF

de
ð0Þðcos h1 � cos hÞ: ðD7Þ

Thus, the number of roots of (D2) depends on h.
For h1 < h � p=2 we have dH

de ð0Þ > 0. Considering that Hð0Þ ¼ 0 and
(D6), there is no root different from e ¼ 0.

For h ¼ h1, dH
de ð0Þ ¼ 0. Thus, e� ¼ 0 and dH

de ðeÞ > 0 for e > 0. There is
again a single root, e ¼ 0.

For 0 � h < h1, dH
de ð0Þ < 0. Thus, according to (D6), e� > 0 and there

exists a second root e > 0 of Eq. (D2) or (7).
These results are in agreement with those of Fig. 7(b).

Case, ec
1 < e1

From Eq. (D3), Hð0Þ > 0. Introducing the angle h1 ¼
arccosðexpð�e1ÞÞ, 0 � h1 � p=2, the relationship Eq. (D7) is still valid.

Thus, for h1 � h � p=2, we have dH
de ð0Þ � 0 and, since Hð0Þ > 0, there

is no root for Eq. (D2) or (7). For 0 � h < h1, we have dH
de ð0Þ < 0 and

therefore, according to (D6), the deformation e�, for which HðeÞ is mini-
mum, is strictly positive. Since Hð0Þ > 0, three situations can be found
[as shown in the Fig. 8(b)] depending on the value of h: there exists
zero, one, or two roots.
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